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CONTEXT

What is Machine Ethics?

Why do we care?



INCREASING NUMBER OF DEPLOYED Al SYSTEMS

e Examples: loan decisions; automatic hiring; ...
e Impact on human (daily) lives
e = Several concerns from society

= Ethical considerations

= Explainability

= Trust



WHAT IS MACHINE ETHICS

e |[ncorporating algorithmic capabilities for ethical decision-
making

e Artificial agents able to reason about norms and values

e | earning behaviours that are aligned with human values

Related to Dignum'’s “Ethics By Design”



MACHINE ETHICS AND NORMATIVE
SYSTEMS

A brief state of the art




TOP-DOWN, BOTTOM-UP, AND HYBRID APPROACHES

e Top-down

= Formalizing existing ethical principles

E.g., Kant’s Categorical Imperative, Aquinas’ Doctrine of Double Effect, ...

= Symbols and normative systems

Great for including expert knowledge, ensuring that the system remains within
bounds

But more difficult to adapt to new, unknown, or conflictual situations



TOP-DOWN, BOTTOM-UP, AND HYBRID APPROACHES

e Bottom-up
= | earning a new principle from interactions

= E.g. supervised learning, reinforcement learning (RL),
and inverse RL

= = Learning systems
= Great for adapting to specific data (different cultures)

= But harder to explore / assess the learned principle



TOP-DOWN, BOTTOM-UP, AND HYBRID APPROACHES

e Hybrid

= Combines advantages of both Top-down and Bottom-
up approaches

= E.g. learning constrained by norms
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ARGUMENTATION FOR JUDGMENT

The AJAR framework



OUR IDEA

* \We do not know the correct action, but we can judge an
action

e RLis great for learning behaviours based on a reward
signal

e Argumentation is great to specify what we want

= Why not combining them?



CONCEPTUAL ARCHITECTURE
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ARGUMENTATION FRAMEWORK FOR JUDGING A DECISION

We define an AFJD as a graph AF containing:

o Arguments AF[args (nodes)

o Attack relationship AF s« between arguments (edges)

* Setof pro-arguments AF g |

e Set of con-arguments AF g ;



JUDGING AGENTS

We define a judging agent as a tuple:

e Amoral value

e An AFJD (graph with pros and cons)

e Afiltering function €

e A grdfunction to compute the grounded extension
e Ajudgment functionJ : AFJD — R, e.g,,

lpros € grd(AF args))l
lpros € grd(AF|ares))| + [cons € grd(AF ares))

J(AF) =






FINAL ARCHITECTURE
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EXAMPLE OF JUDGMENT

(Simplified) Affordability
argumentation graph
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EXAMPLE OF JUDGMENT

(Simplified) Affordability
argumentation graph

Prosumer has
over-consumed

# Pros L
#Pros+#Cons

1
2

Prosumer

has a positive
payoff

Legend




ADVANTAGES

e Explicit multiple moral values

e Easier to communicate with non-Al experts (regulators,
domain experts, users, ...)

e Possibility to justify/explain why a reward was given

e Paving the way for co-construction loop



LIMITATIONS

e Same aggregation method used for all learning agents

e Aggregation = reducing information, hiding dilemmas



TOWARD USER IN THE LOOP

Multi-Objective Reinforcement Learning and human
preferences




THE IDEA

e Providing separate rewards (for each moral value)

e = Capability to compare rewards, detect situations of
conflicts (dilemmas)

e = Raise dilemmas to human users (better explainability)
e = Ask them for their preferences (better alignment)
e Focus on contextualized preferences

= Different human users = different preferences

= Different situations = different preferences



IDENTIFYING DILEMMAS

Using multiple rewards = manipulating multiple interests for each action

= Difficult to compare!

Examples:
= Q(ay) =1[3,4,3.5,3]
= Q(ap) =1[1,2,3.5,3]
= Q(a3) =15,3,2.5,3]

e a, is Pareto-dominated by a; ; what about a3?

= Provide a “theoretical max” as a reference point, and ask users what they find
acceptable



ETHICAL THRESHOLDS

e |ntuitively represent which trade-offs between moral
values an user would accept

e A vector of thresholds (between 0% and 100%) for each
moral value

e Eg.Ci =[50%,75%,50%,60%]



DIFFERENT USERS RECOGNIZE DILEMMAS DIFFERENTLY

Interests Theoreticals Ratio
Action Q(a;)
Q(ﬂw) ch(ﬂi) ch?ﬂ-i)
a1 |[3,4353] | [5555 | [$ 4,35, 3]
as | [5,3,25,3] | I6,86,8,6] (2,3, 25 3]




DIFFERENT USERS RECOGNIZE DILEMMAS DIFFERENTLY
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DIFFERENT USERS RECOGNIZE DILEMMAS DIFFERENTLY
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SETTLING DILEMMAS THROUGH USER PREFERENGES

e When adilemma is identified, the agent cannot settle it
autonomously

e = We ask the user what trade-off they would prefer

e Simple technique: directly select an action among the
proposed ones

e Problem: the system would risk being too overwhelming if
we ask each time there is a dilemma!

e = Some dilemmas might be similar, maybe we can group
them



LEARNING PREFERENGES

e Dilemmas happen in situations
e A situation = a set of observations € R
e E.g. hour =8, available energy =4, 000, etc.

e \We define a context as a set of bounds (min, max) for each
observation

e Eg.,c; = {{6,9},{2000,5000}



EXAMPLES OF CONTEXTS
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EXAMPLES OF CONTEXTS
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EXAMPLES OF CONTEXTS
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EXAMPLES OF CONTEXTS
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EXAMPLES OF CONTEXTS
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EXAMPLES OF CONTEXTS
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PROTOTYPE GUI

hour -|.a\railable_ene-|.persnnal_stm-. comfort | payoff | equity “enefgv_loss” autonomy | exclusion | well_being ”over_consum.:
19 0.757 1.000 0.202 0.5M 1.000 0.000 0.228 0.000 0.202 0.000
| Action Selector | Action Parameters | Action Interests |
13 19
hour | I [ [
0 6 12 18 0 (5] 12 18
0.616 0.862
available_energy | 1 | 1
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 08 1.0
0.884 1.000
personal_storage | i | |
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.101 0.257
comfort | | | |
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.407 0.604
payoff | 1| | 11
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.903 1.000
equity | | |
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.000 0.104
energy_loss |_|_| L
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.075 0.310
autonomy | | [ I
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.000 0.254
exclusion L1 [ I
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.108 0.302
well_being | | [ |
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.000 0.149
over_consumption|_| | [ |
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0



PROTOTYPE GUI

| hour available_ene | personal_stol comfort payoff | equity | energy_loss autonomy exclusion well_being uur_consunl
19 0.757 1.000 0.202 0.501 1.000 0.000 0.228 0.000 0.202 0.000
Action Interests ‘
Action D=0 Action ID =1

8
- B
W
o
g
£ 4

2

_ |
0
Action D=2 ActionID=3

- B
W e e m———— e -
o
@
E4

2 - -

0 N

WellBeing Affordability Inclusiveness Env.Sustain. WellBeing Affordability Inclusiveness Env.Sustain.
Reward Reward




PROTOTYPE GUI

| hour available_ene | personal_stor,  comfort | payoff | eguity |enu‘9‘r_lm autonomy exclusion well_being cmr_consunl
19 0.757 1.000 0.202 0.501 1.000 0.000 0.228 0.000 0.202 0.000
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PROTOTYPE GUI

hour available_ene personal_sto comfort payoff equity energy_loss aut

19 0.757 1.000 0.202 0.501 1.000 0.000 0.

Context Action Selector Action Parameters Action Interests

A-r:tlnn D=0
C Parameterﬂ [{] 23111555 0.06819946 0.59250098 0.19501867 0.677203210. ?EEQE?&?]

A{:tmn ID=1
Parameters = [0.0886732 0.30100162 0.64076246 0.09730741 0.62050321 0.01911589]
Interests = [2.31330539 2.09347349 7.0866135 0.24543208]

ActionID =2
Parameters = [0.06320528 0.60990433 0.77258426 0.79014815 0.51986592 0.96462507]
Interests = [2.45198313 2.9457167 3.97402727 1.61318562]

ActionIlD=3
Parameters = [0.041645 0.61255743 0.78164123 0.80839148 0.48636543 0.97873474]
Interests = [2.76133183 2.84486227 4.37412502 1.77183498)]



CONCLUSION



OUR PROPOSITION

e Combining RL and normative systems (e.g.,
argumentation)

e |earning a behaviour with a judgment-based reward
signal

e Putting user in the loop with dilemmas and preferences



THANK YOU FOR YOUR ATTENTION



SMARTGRID USE-CASE
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