MACHINE ETHICS AND NORMATIVE SYSTEMS

TOWARDS USER IN THE LOOP

Rémy Chaput, PhD

2023/02/21

Seminar of the Individual and Collective Reasoning Group — University of Luxembourg

https://rchaput.github.io/talk/icr-lu-2023/

CONTEXT

What is Machine Ethics?

Why do we care?

INCREASING NUMBER OF DEPLOYED AI SYSTEMS

- Examples: loan decisions; automatic hiring; ...
- Impact on human (daily) lives
- ⇒ Several concerns from society
 - Ethical considerations
 - Explainability
 - Trust
 - •••

WHAT IS MACHINE ETHICS

- Incorporating algorithmic capabilities for ethical decisionmaking
- Artificial agents able to reason about norms and values
- Learning behaviours that are aligned with human values

Related to Dignum's "Ethics By Design"

Dignum, Virginia. Responsible artificial intelligence: how to develop and use AI in a responsible way. Cham: Springer, 2019.

MACHINE ETHICS AND NORMATIVE SYSTEMS

A brief state of the art

TOP-DOWN, BOTTOM-UP, AND HYBRID APPROACHES

Top-down

- Formalizing existing ethical principles
- E.g., Kant's Categorical Imperative, Aquinas' Doctrine of Double Effect, ...
- ⇒ Symbols and normative systems
- Great for including expert knowledge, ensuring that the system remains within bounds
- But more difficult to adapt to new, unknown, or conflictual situations

TOP-DOWN, BOTTOM-UP, AND HYBRID APPROACHES

- Bottom-up
 - Learning a new principle from interactions
 - E.g., supervised learning, reinforcement learning (RL),
 and inverse RL
 - ⇒ Learning systems
 - Great for adapting to specific data (different cultures)
 - But harder to explore / assess the learned principle

TOP-DOWN, BOTTOM-UP, AND HYBRID APPROACHES

- Hybrid
 - Combines advantages of both Top-down and Bottomup approaches
 - E.g., learning constrained by norms

EXAMPLE: ETHICAL LAYER

Bremner, Paul, et al. "On proactive, transparent, and verifiable ethical reasoning for

EXAMPLE: ETHICAA

Principles priority

ARGUMENTATION FOR JUDGMENT

The AJAR framework

OUR IDEA

- We do not know the correct action, but we can judge an action
- RL is great for learning behaviours based on a reward signal
- Argumentation is great to specify what we want
- ⇒ Why not combining them?

CONCEPTUAL ARCHITECTURE

ARGUMENTATION FRAMEWORK FOR JUDGING A DECISION

We define an AFJD as a graph AF containing:

- Arguments AF_[Args] (nodes)
- Attack relationship AF_[Att] between arguments (edges)
- Set of pro-arguments $AF_{[F_p]}$
- Set of *con*-arguments $AF_{[F_c]}$

JUDGING AGENTS

We define a judging agent as a tuple:

- A moral value
- An AFJD (graph with pros and cons)
- A filtering function ∈
- A grd function to compute the grounded extension
- A judgment function $J : AFJD \rightarrow \mathbb{R}$, e.g.,

$$J(AF) = \frac{|pros \in grd(AF_{[Args]})|}{|pros \in grd(AF_{[Args]})| + |cons \in grd(AF_{[Args]})|}$$

FINAL ARCHITECTURE

(Simplified) Affordability argumentation graph

(Simplified) Affordability argumentation graph

(Simplified) Affordability argumentation graph

(Simplified) Affordability argumentation graph

Prosumer has over-consumed

$$\frac{\#Pros}{\#Pros + \#Cons} = \frac{1}{2}$$

ADVANTAGES

- Explicit multiple moral values
- Easier to communicate with non-Al experts (regulators, domain experts, users, ...)
- Possibility to justify/explain why a reward was given
- Paving the way for co-construction loop

LIMITATIONS

- Same aggregation method used for all learning agents
- Aggregation ⇒ reducing information, hiding dilemmas

TOWARD USER IN THE LOOP

Multi-Objective Reinforcement Learning and human preferences

THE IDEA

- Providing separate rewards (for each moral value)
- ⇒ Capability to compare rewards, detect situations of conflicts (dilemmas)
- → Raise dilemmas to human users (better explainability)
- → Ask them for their preferences (better alignment)
- Focus on contextualized preferences
 - Different human users ⇒ different preferences
 - Different situations ⇒ different preferences

IDENTIFYING DILEMMAS

- Using multiple rewards ⇒ manipulating multiple interests for each action
- ⇒ Difficult to compare!
- Examples:
 - $\mathbf{Q}(\mathbf{a}_1) = [3, 4, 3.5, 3]$
 - $\mathbf{Q}(\mathbf{a}_2) = [1, 2, 3.5, 3]$
 - $\mathbf{Q}(a_3) = [5, 3, 2.5, 3]$
- a₂ is Pareto-dominated by a₁; what about a₃?
- → Provide a "theoretical max" as a reference point, and ask users what they find acceptable

ETHICAL THRESHOLDS

- Intuitively represent which trade-offs between moral values an user would accept
- A vector of thresholds (between 0% and 100%) for each moral value
- E.g., $\zeta_1 = [50\%, 75\%, 50\%, 60\%]$

Action	Interests $Q(a_i)$	Theoreticals $Q^{th}(a_i)$	Ratio $\frac{Q(a_i)}{Q^{th}(a_i)}$
a_1	[3, 4, 3.5, 3]	[5, 5, 5, 5]	$\left[\frac{3}{5}, \frac{4}{5}, \frac{3.5}{5}, \frac{3}{5}\right]$
a_3	[5, 3, 2.5, 3]	[6, 6, 6, 6]	$\left[\frac{5}{6}, \frac{3}{6}, \frac{2.5}{6}, \frac{3}{6}\right]$

Action	Interests $Q(a_i)$	Theoreticals $Q^{th}(a_i)$	$rac{Q(a_i)}{Q^{th}(a_i)}$
a_1	[3, 4, 3.5, 3]	[5, 5, 5, 5]	(60%, 80%, 70%, 60%)
a_3	[5, 3, 2.5, 3]	[6, 6, 6, 6]	[83%, 50%, 42%, 50%]

Action	Interests $Q(a_i)$	Theoreticals $Q^{th}(a_i)$	$rac{Q(a_i)}{Q^{th}(a_i)}$
a_1	[3, 4, 3.5, 3]	[5, 5, 5, 5]	(60%, 80%, 70%, 60%)
a_3	[5, 3, 2.5, 3]	[6, 6, 6, 6]	(83%, 50%, 42%, 50%)

Action	Interests $Q(a_i)$	Theoreticals $Q^{th}(a_i)$	Ratio $\frac{Q(a_i)}{Q^{th}(a_i)}$	Human thresholds ζ_1 [50%, 75%, 50%, 60%]
a_1	[3, 4, 3.5, 3]	[5, 5, 5, 5]	(60%, 80%, 70%, 60%)	Acceptable
a_3	[5, 3, 2.5, 3]	[6, 6, 6, 6]	(83%, 50%, 42%, 50%)	Human
			Ac	thresholds ζ_2 cceptable $80\%, 45\%, 20\%, 50\%$
				S
				Human
			Ø < D :	thresholds ζ_3 $\{75\%, 70\%, 0\%, 60\%\}$

SETTLING DILEMMAS THROUGH USER PREFERENCES

- When a dilemma is identified, the agent cannot settle it autonomously
- ⇒ We ask the user what trade-off they would prefer
- Simple technique: directly select an action among the proposed ones
- Problem: the system would risk being too overwhelming if we ask each time there is a dilemma!
- Some dilemmas might be similar, maybe we can group them

LEARNING PREFERENCES

- Dilemmas happen in situations
- A situation = a set of observations $\in \mathbb{R}$
- E.g., hour = 8, available energy = 4,000, etc.
- We define a context as a set of bounds (min, max) for each observation
- E.g., $c_1 = \{\{6,9\}, \{2000, 5000\}\}$

EXAMPLES OF CONTEXTS

EXAMPLES OF CONTEXTS

EXAMPLES OF CONTEXTS

EXAMPLES OF CONTEXTS

EXAMPLES OF CONTEXTS

EXAMPLES OF CONTEXTS

hour	available_ene	personal_stoi	comfort	payoff	equity	energy_loss	aut				
19	0.757	1.000	0.202	0.501	1.000	0.000	0.				
Context	Action Selecto	r Action Pa	Action Parameters		ts						
Action ID = 0 • Parameters = [0.23111555 0.06819946 0.59250098 0.19501867 0.67720321 0.76896747] Interests = [5.70397815 6.67034231 6.67074222 0.65284908]											
Action ID = 1 Parameters = [0.0886732 0.30100162 0.64076246 0.09730741 0.62050321 0.01911589] Interests = [2.31330539 2.09347349 7.0866135 0.24543208]											
Action ID = 2 Parameters = [0.06320528 0.60990433 0.77258426 0.79014815 0.51986592 0.96462507] Interests = [2.45198313 2.9457167 3.97402727 1.61318562]											
Action ID = 3 Parameters = [0.041645 0.61255743 0.78164123 0.80839148 0.48636543 0.97873474] Interests = [2.76133183 2.84486227 4.37412502 1.77183498]											

CONCLUSION

OUR PROPOSITION

- Combining RL and normative systems (e.g., argumentation)
- Learning a behaviour with a judgment-based reward signal
- Putting user in the loop with dilemmas and preferences

THANK YOU FOR YOUR ATTENTION

SMARTGRID USE-CASE

