Learning to identify and settle dilemmas through contextual user preferences

Rémy Chaput •

remy.chaput@univ-lyon1.fr UCBL, LIRIS UMR5205

Laetitia Matignon

UCBL, LIRIS UMR5205

Mathieu Guillermin

CONFLUENCE (EA 1598), Lyon Catholic University

6-8 November 2023 - ICTAI 2023

https://rchaput.github.io/publication/ictai2023/

Context

- More and more AI systems "leaving the lab" to be deployed into our society¹
- Significant impact over human lives
- Need to align with humans' (moral) values
- Humans have various and contextual preferences over values

1. Luccioni, Alexandra, and Yoshua Bengio. 2019. "On the Morality of Artificial Intelligence." https://arxiv.org/abs/1912.11945

• Learn ethically-aligned behaviours

- Learn ethically-aligned behaviours
- Integrate contextual human preferences over multiple moral values

- Learn ethically-aligned behaviours
- Integrate contextual human preferences over multiple moral values
- Manageable preferences for (non-expert) humans

- Learn ethically-aligned behaviours
- Integrate contextual human preferences over multiple moral values
- Manageable preferences for (non-expert) humans
- Explicitly identify dilemmas and ask users when we do not know how to solve them

- Learn ethically-aligned behaviours
- Integrate contextual human preferences over multiple moral values
- Manageable preferences for (non-expert) humans
- Explicitly identify dilemmas and ask users when we do not know how to solve them
- Learn users' preferences so we can automate the dilemmas that are already known

Architecture

- Block-based architecture ; Multi-Objective Reinforcement Learning
- We leverage the QSOM¹ learning algorithm

1. Chaput, Rémy, Olivier Boissier, and Mathieu Guillermin. 2023. "Adaptive Reinforcement Learning of Multi-Agent Ethically-Aligned Behaviours: The QSOM and QDSOM Algorithms." https://arxiv.org/abs/2307.00552

Learning interesting actions

- Goal: find actions (parameters and Q-Values) that can be proposed during dilemmas
- Should offer different trade-offs ⇒ we cannot focus only on, e.g., averaging multiple objectives

⇒ We introduce exploration profiles

Exploration profiles

i) Exploration profile p

- State-SOM: Self-Organizing Map¹ that maps continuous observations to discrete states
- Action-SOM: SOM that maps action identifiers to continuous action parameters
- Q-Table Q_p : multi-objective interests of actions in states
- Vector of exploration weights ϱ

Learns a subset of the action space, directed by arrho

1. Kohonen, Teuvo. 1990. "The Self-Organizing Map." Proceedings of the IEEE 78 (9): 1464–80. https://doi.org/10.1109/5.58325

6

Determining if an action is interesting

The action space is learned by:

- Selecting an action
- Randomly noising it to explore
- Determining whether the noised action is better than the learned one:

$$\overrightarrow{\varrho} \cdot \overrightarrow{r_{t}} + \gamma \operatorname{argmax} \left(\overrightarrow{\varrho} \cdot Q_{p}(s_{t+1}, j') \right) \stackrel{?}{>} \overrightarrow{\varrho} \cdot \underbrace{Q_{p}(s_{t}, j)}_{\text{Learned action}}$$

Prediction of next action

Exploration weights

- m + 1 exploration profiles (m = number of moral values)
- generalist profile
 - $\rightarrow Q_0 = \left[\frac{1}{m}, \cdots, \frac{1}{m}\right]$
- m specialized profiles

→
$$Q_1 = [0.9, \frac{0.1}{m-1}, \cdots, \frac{0.1}{m-1}]$$

→ $Q_2 = [\frac{0.1}{m-1}, 0.9, \cdots, \frac{0.1}{m-1}]$
→ …
→ $Q_m = [\frac{0.1}{m-1}, \cdots, \frac{0.1}{m-1}, 0.9]$

Learning users' preferences

- Goal: learn to execute actions corresponding to users' preferences in dilemmas
- Need to identify dilemmas
- Reduce cognitive load: do not ask each time, but re-apply same actions in similar situations

Theoretical interests

i Theoretical interests

 Q^{theo} of same shape as Q (3D Q-Table)

Learned by assuming the action obtained the maximal reward

Represent interests an action would have if it had perfect impact

Using the ratio $\frac{Q(s,a)}{Q^{theo}(s,a)}$ gives an idea of how well the action performs

Ethical thresholds

i Ethical thresholds

Set by users

Represent expectations over permissible actions

Constraints relative to *interests* and *theoretical interests*

 ζ = set (of any size) of vectors (of size m), or relationships over and

For example, (0.6 \land 0.6) v (0.8 \land 0.5)

The deployment phase: Acceptable actions and Dilemmas

Acceptable action

Action that is deemed permissible by user, based on ethical thresholds $\boldsymbol{\zeta}$

 $\texttt{acceptable}(\overrightarrow{o}, p, a, \zeta) \Leftrightarrow \exists i \ \forall k \in [[1, m]] \ \frac{\mathbb{Q}_p(\texttt{States}_p(\overrightarrow{o}), a, k)}{\mathbb{Q}_p^{\texttt{theo}}(\texttt{States}_p(\overrightarrow{o}), a, k)} \geq \zeta_{i, k}$

For example, $\left[\frac{9}{10}, \frac{5}{10}\right]$ is acceptable w.r.t. (0.6 \land 0.6) \lor (0.8 \land 0.5)

The deployment phase: Acceptable actions and Dilemmas

(i) Acceptable action

Action that is deemed permissible by user, based on ethical thresholds ζ

acceptable $(\vec{o}, p, a, \zeta) \Leftrightarrow \exists i \ \forall k \in [[1, m]] \frac{Q_p(\text{States}_p(\vec{o}), a, k)}{Q_p^{\text{theo}}(\text{States}_p(\vec{o}), a, k)} \ge \zeta_{i,k}$

For example, $[\frac{9}{10}, \frac{5}{10}]$ is acceptable w.r.t. $(0.6 \land 0.6) \lor (0.8 \land 0.5)$

í Dilemmas

Situations in which no action is permissible

dilemma(\vec{o}, ζ) $\Leftrightarrow \mathbb{A}(p, a)$: acceptable(\vec{o}, p, a, ζ)

Contexts

i Context

Allows to group similar dilemmas together

Defined by users based on situations

Bounds over the observations

$$c = \left< (b_1, B_1), \cdots, (b_g, B_g) \right> \text{ for } g$$
 dimensions

- System memorizes chosen action when a context is created
- The same action is automatically re-applied when the same context is identified

Experiments and results

- Case study: energy distribution within a small simulated Smart Grid
 - \rightarrow 4 moral values, handcrafted ¹

Two experiments:

- Checking that agents learn various actions
- Checking that dilemmas are manageable (cognitive load)

1. Alcaraz, Benoît, Olivier Boissier, Rémy Chaput, and Christopher Leturc. 2023. "AJAR: An Argumentation-Based Judging Agents Framework for Ethical Reinforcement Learning." In AAMAS '23. https://dl.acm.org/doi/abs/10.5555/3545946.3598956

Experiments: Agents learn various actions

- Automatic policies
- $\pi_{\theta}(s) = \operatorname{argmax}_{a} \theta$ ·
- Policies' scores plotted moral values 2-by-2
- Various trade-offs iden
- But exploration could b better (especially for *Environmental*)

Experiments: Manageable dilemmas

• Number of dilemmas diminishes very quickly

Experiments: Manageable dilemmas

 Number of dilemmas diminishes very quickly

• In average, 4.4 actions proposed per dilemma

Conclusion

- A novel approach for Multi-Objective RL
- Learning ethically-aligned behaviours
- Focuses on explicitly identifying dilemmas
- Algorithm learns various trade-offs, but exploration could have been better
- The block-based architecture allows improvements (e.g., curiosity-based exploration)

Thank you for your attention

Any questions?

The bootstrap phase: updated Bellman equation

We add a 3rd dimension (the moral value)

$$\forall \mathbf{k} \in [[1, \mathbf{m}]] : \mathbb{Q}_p^{t+1}(\mathbf{s}_t, \mathbf{a}_t, \mathbf{k}) \leftarrow \alpha \left[r_{t, \mathbf{k}} + \gamma \max_{\mathbf{a}'} \mathbf{\varrho} \cdot \mathbb{Q}_p^t(\mathbf{s}_{t+1}, \mathbf{a}')_{\mathbf{k}} \right]$$
$$+ (1 - \alpha) \mathbb{Q}_p^t(\mathbf{s}_t, \mathbf{a}_t, \mathbf{k})$$

Graphical User Interface: choosing a context

hour	availa	ble_ene p	personal_stor	comfort	payo	ff	equity	energy_loss	autonomy	/ excl	usion	well_being	over_consum
19	0.3	757	1.000	0.202	0.50)1	1.000	0.000	0.228	0.0	000	0.202	0.000
Context	Action	Selector	Action Par	rameters	Action In	terests							
Contexts	Hotion	00100101	12				-			10			
hour		13							19				
		0	6	12	18		0	6	12	18			
				0.61	6					0.86	2		
available_energy													
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		
					0.8	384					1.000		
personal_	personal_storage												
			0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		
		0.10)1					0.257					
comfort													
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		
payoff			0.4	07					0.604				
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		
	equity				0.	903					1.000		
equi			0.2	0.5	0.0	10	0.0	0.2	0.5	0.0	10		
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.0	1.0		
energy_loss		0.000					0.10	04					
		0.0	0.2	0.5	0.8	10	0.0	0.2	0.5	0.8	10		
		0.075		0.0	0.0		0.0	0.310	0.0	0.0			
autonomy		0.070	, 					0.510					
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		
		0.000						0.254					
exclusion													
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		
well_being		0.10)8					0.302					
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		
		0.000					0	0.149					
over_consumption													
		0.0	0.2	0.5	0.8	1.0	0.0	0.2	0.5	0.8	1.0		

Graphical User Interface: comparing actions' interests

Graphical User Interface: comparing actions' parameters

