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Context

» More and more Al systems “leaving the lab” to be deployed into
our society'

 Significant impact over human lives
» Need to align with humans' (moral) values

* Humans have various and contextual preferences over values

1. Luccioni, Alexandra, and Yoshua Bengio. 2019. “On the Morality of Artificial Intelligence.’
httns://arxiv.ora/abs/1912.119458
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Objectives

» Learn ethically-aligned behaviours

* Integrate contextual human preferences over multiple moral
values

» Manageable preferences for (non-expert) humans

» Explicitly identity dilemmas and ask users when we do not
KNow how to solve them

» Learn users’ preferences so we can automate the dilemmas
that are already known



Architecture
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» Block-based architecture ; Multi-Objective Reinforcement
Learning

» We leverage the QSOM' learning algorithm

1. Chaput, Rémy, Olivier Boissier, and Mathieu Guillermin. 2023. “Adaptive Reinforcement Learning of Multi-Agent
Ethically-Aligned Behaviours: The QSOM and QDSOM Algorithms.” https://arxiv.org/abs/2307.00552



The bootstrap phase

Learning interesting actions

 Goal: find actions (parameters and Q-Values) that can be
proposed during dilemmas

» Should offer different trade-offs = we cannot focus only on,
e.g., averaging multiple objectives

= We introduce exploration profiles



The bootstrap phase

Exploration profiles

(i) Exploration profile p

« State-SOM: Self-Organizing Map' that maps continuous observations to discrete states
« Action-SOM: SOM that maps action identifiers to continuous action parameters

* Q-Table Q,: multi-objective interests of actions in states

« Vector of exploration weights Q

Learns a subset of the action space, directed by Q

1. Kohonen, Teuvo. 1990. “The Self-Organizing Map.” Proceedings of the IEEE 78 (9): 1464-80.
httns://doiora/10.1109/5 375
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The bootstrap phase

Determining if an action is interesting

The action space is learned by:

» Selecting an action
» Randomly noising it to explore

» Determining whether the noised action is better than the

earned one:
0
S S S ./ - —> .
Q Iy + Y argmax( Q . Qp(st+1 > ) )) > Q . Qp(staj)
—— ./ —
Reward ._.._._J._._._._._, [earned action

Prediction of next action



The bootstrap phase

Exploration weights
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The deployment phase

Learning users’ preferences

» Goal: learn to execute actions corresponding to users’
references in dilemmas

» Need to identity dilemmas

» Reduce cognitive load: do not ask each time, but re-apply same
actions in similar situations



The deployment phase

Theoretical interests

(i) Theoretical interests

Q(s,2)

Using the ratio T (s )
performs

Q'™e0 of same shape as Q (3D Q-Table)
Learned by assuming the action obtained the maximal reward

Represent interests an action would have if it had perfect impact

gives an idea of how well the action
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The deployment phase
Ethical thresholds

(i) Ethical thresholds

Set by users
Represent expectations over permissible actions
Constraints relative to interests and theoretical interests

C = set (of any size) of vectors (of size m), or relationships over and

For example, (0.6 A 0.6) v (0.8 A 0.5)
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The deployment phase: Acceptable actions and
Dilemmas

(i) Acceptable action

Action that is deemed permissible by user, based on ethical thresholds C

(States, (0).ak)
m]] O S

acceptable(o,p,a,C) < di Vk € [[1, Qe (States, (0),ak)

= Ci,k

For example, [ =, > | is acceptable w.r.t.
PI€ 176> 10 P

(0.6 A0.6) v (0.8 A0.5)
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The deployment phase: Acceptable actions and
Dilemmas

(i) Acceptable action

Action that is deemed permissible by user, based on ethical thresholds ¢

Q, (States,,(6) ,a,k)
acceptable(o, p, a, {) © i Vk € [[1, m]] >y
Q;heO(Statesp(B) Ja,k) ’

9 5
For example, [75° To] Is acceptable w.rt. (0.6 A 0.6) v (0.8 A 0.5)

(i) Dilemmas
Situations in which no action is permissible

dilemma(o, {) © #(p,a) : acceptable(o, p, a, {)
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The deployment phase

Contexts
Context
@ A
S
. . =
Allows to group similar dilemmas together : Context ¢
Defined by users based on situations S
2
Bounds over the observations ¥

¢ ={(b1,By), "+, (by,By)) forg

dimensions

» System memorizes chosen action when a context is created

» The same action is automatically re-applied when the same
context is identified

13



Experiments and results

» Case study: energy distribution within a small simulated Smart
Grid

4 moral values, handcrafted '

Two experiments:

» Checking that agents learn various actions

» Checking that dilemmas are manageable (cognitive load)

1. Alcaraz, Benoit, Olivier Boissier, Rémy Chaput, and Christopher Leturc. 2023. "AJAR: An
Argumentation-Based Judging Agents Framework for Ethical Reinforcement Learning.” In
AAMAS 23 httns://dl acm ora/doi/abs/10 5555/3545946 350895/
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Experiments: Agents learn various actions

» Automatic policies

Weights 8
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Experiments: Manageable dilemmas

» Number of dilemmas
diminishes very quickly
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Experiments: Manageable dilemmas

o« Number of dilemmas
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Conclusion

» A novel approach for Multi-Objective RL
» Learning ethically-aligned behaviours
» Focuses on explicitly identitying dilemmas

» Algorithm learns various trade-offs, but exploration could have
been better

» The block-based architecture allows improvements (e.g.,
curiosity-based exploration)
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Thank you for your attention

Any questions?




The bootstrap phase: updated Bellman
equation

We add a 3rd dimension (the moral value)

VKETmI]: Q5 (su,a0K) <= rus o+ ymax 0-Gy st a'

+ (1 _ (x)QL(Sta atak)



Graphical User Interface: choosing a context

hour available_ene | personal_sto comfort payoff equity energy_loss autonomy exclusion well_being | over_consum
19 0.757 1.000 0.202 0.50 1.000 0.000 0.228 0.000 0.202 0.000
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Graphical User Interface: comparing actions’
Interests

| hour available_ene | personal_sto comfort payoff | equity | energy_loss autonomy exclusion well_being u\rer_cnnsu11|
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Graphical User Interface: comparing actions’

parameters
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